
With webMethods Microservices Runtime you can deliver your integrations as microservices that are
fault-tolerant, are highly scalable, and interact securely using lightweight messaging or APIs. You can:

• Create resilient, platform-agnostic microservices, in the cloud or on-premises

• Scale microservices with industry-standard tools like Docker®, Kubernetes®, Red Hat® OpenShift and
others

• Communicate via lightweight messaging with Software AG’s Universal Messaging

• Expose microservices as public or private APIs and secure them using webMethods Microgateway

• Manage infrastructure with a health check based on

• Prometheus™ and recovery capability

Key benefits
• Create and deploy modular integrations that adapt independently to market requirements

• Scale APIs in the cloud with a distributed microservices-backed architecture

• Support CI/CD with built-in DevOps automation tooling

• Ensure reliability with a reactive architecture that includes builtin fault tolerance and recovery

• Encourage a rapidly evolving ecosystem in which business capabilities can spin up quickly

Embrace next-generation integration
architecture with webMethods
Businesses are increasingly adopting architecture styles that take advantage of the agility and scale
of the cloud. Microservices are one of the key building blocks of the next generation of application
and integration architecture, enabling developers to construct applications as collections of small
services, each running in their own processes and communicating using lightweight protocols.
These microservices are typically built to provide granular business functions that are independently
deployable and very robust.

webMethods
Microservices Runtime
Fact sheet

webMethods Microservices Runtime

2

Features
Self-registering services:
Endpoints in the cloud can change unexpectedly, but user-facing applications need to
provide uninterrupted service. webMethods Microservices Runtime provides pluggable
service registry support, enabling applications to look up endpoint information at runtime
so that users always get a response. Microservices Runtime comes preconfigured for the
Consul registry and supports other service registry providers.

Self-healing services:
When services rely on each other, those dependencies can cause cascading failures in
the cloud. webMethods Microservices Runtime supports an architecture pattern known as
“circuit breaker” that can be used to control cascading failures. The circuit breaker can be
opened based on a predefined threshold of exceptions. While the circuit is open, the calling
service can be configured to handle a failure gracefully. When a predefined reset period
elapses, the circuit breaker will check on service health to determine whether to close the
circuit, returning the service to normal behavior, or continue with alternate behavior.

You can also set up custom health checks with out-of-the-box indicators like disk space,
JDBC® pools, memory, Java® Message Service (JMS) connections and adapter connections.
Administrators can define a combination of these key indicators and use them for proactive
monitoring or to automatically restart a misbehaving service.

Continuous delivery:
To achieve reliability and quality in a CI/CD environment, you can follow a test-driven
development methodology. The webMethods Unit Test Framework enables test cases to
be designed before starting development, and those tests can be automated and included
in the DevOps lifecyle. The webMethods development environment integrates with most
common third-party DevOps tools.

Self-scaling services:
To achieve the rapid scalability and flexibility of a microservices architecture, it’s critical to
be able to automate deployment. webMethods Microservices Runtime can be deployed
with Docker and Kubernetes for packing, distributing and managing your applications
automatically. Out-of-thebox Docker scripts simplify deployment, and built-in readiness and
liveness checks enable Kubernetes to manage your containers.

On-the-Fly Docker Deployment

webMethods Microservices Runtime

3

On-the-fly Docker deployment:
 When a microservice is deployed using Docker containers, there are many configurations
that might need to be updated: connector configurations, access control lists, extended
settings and schedulers, cache manager configurations, and more. With webMethods
Microservices Runtime, you can dynamically inject the appropriate configuration at runtime
using Docker environment variables without rebuilding the container. In addition, the
desired versions of services or packages that constitute the microservice can be selected
at deployment time. By isolating the elements of your microservices runtime and building it
on the fly instead of prebuilding static Docker images, you deploy what you need, when you
need it.

Right-sized microservices:
Textbook microservices require an event-driven architecture where all services are loosely
coupled and data is stored local to the microservice. However, many organizations are taking
a more pragmatic approach to achieve their business objectives, using a transitional style
known as miniservices that can be managed and scaled independently. Alternatively, it may
be desirable to deploy well-defined business capabilities as large-grained services known as
macroservices. webMethods Microservices Runtime supports different levels of granularity
and service patterns by enabling users to easily add modules for event routing, RDBMS
support, flat file handling and more—up to and including all functionality in webMethods
Integration Server.

Choice of implementation style:
One of the advantages of microservices is the ability to use the appropriate programming
model and platform for each service. webMethods Microservices Runtime supports
several programming languages for service development: Java, C, C++, and native
FLOW. In addition, pre-built APIs and services, an event bus, and in-memory data make
implementation faster and more flexible. Finally, webMethods Microservices Runtime runs
on a wide variety of operating systems.

Service Patterns

fs_webmethods_microservices_en

webMethods Microservices Runtime

ABOUT SOFTWARE AG
Software AG began its journey in 1969, the year that technology helped put a man on the moon and the software industry was born. Today our infrastructure software makes a world of living connections possible. Every day, millions
of lives around the world are connected by our technologies. A fluid flow of data fuels hybrid integration and the Industrial Internet of Things. By connecting applications on the ground and in cloud, businesses, governments and
humanity can instantly see opportunities, make decisions and act immediately. Software AG connects the world to keep it living and thriving. For more information, visit www.softwareag.com.

© 2021 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG.
Other product and company names mentioned herein may be the trademarks of their respective owners.

To learn more about webMethods

Microservices Runtime, talk to you

Software AG representative or visit

www.softwareag.com/integration.

Take the
next step

Connectivity to data and apps:
Microservices need to connect to a variety of data sources and storage technologies as well
as other applications and services. webMethods Microservices Runtime has a full range
of connectors to support the most modern standards, such as OData, REST and the full
complement of SOAPbased web service support. Also available are pre-built adapters for
simple drag & drop interfaces to dozens of commercial applications, both inside and outside
the firewall. webMethods Microservices Runtime comes preconfigured for highperformance,
low-latency messaging within the enterprise and for web and mobile connections. For
distributed microservice architectures, reliable, secure and scalable messaging that
supports asynchronous communication is a key component.

Microgateway protection and policy enforcement:
Creating and deploying microservices is only part of the challenge with consumer-facing
applications. It’s also essential to secure and monitor access to them. webMethods
Microgateway can be deployed as a headless, self-contained Java app or as a Docker image.
It can also be deployed standalone or in sidecar mode, which enables the microgateway to
easily scale with the microservice and support distributed microservices architectures.

webMethods Microgateway supports both transport and message-layer security policies,
including authentication, authorization, digital encryption and digital signatures. It enables
you to route requests using a variety of routing methods based on payload content or
context, straightthrough routing and load-balancing among multiple service providers. And
finally, you can create policies to control and monitor API consumers.

