
WHITE PAPER

EVOLUTION OF MICROSERVICES
SEVEN FEATURES TO LOOK FOR IN
A MICROSERVICES STACK

Trying to determine the direction and usefulness of
microservices? Then it helps to know where this architectural
style came from, how it relates to other technologies and the
problems it can solve.

Rob Tiberio does just that in this white paper. As middleware
technology expert and chief architect at Software AG, Rob
demystifies microservices and explains the evolution from a
Service-Oriented Architecture (SOA). Read this paper to learn
recommended next steps for practical use of microservices in
enabling digital initiatives and what to look for in a microservices
stack. See how using an Enterprise Service Bus (ESB) can make
a project built in microservices a resounding success.

Origin of microservices
The culmination of several trends
The basic concept of microservices has been around for quite some time; it’s
actually the culmination of several architectural styles.

Several years ago, there were “shared nothing” architectures, also known simply
SN architectures. The concept behind this architectural style was to build a large
application with parts designed to function without any dependencies. Among
the advantages was the ability to scale an instance of an application up and out
independently. By reducing dependencies, the SN architecture also had the benefit
of faster time-to-market. Removing dependencies in the application’s design also

TABLE OF CONTENTS

1 Origin of microservices

4 How microservices matured

8 The ESB’s changing role

10 Seven things to look for in
microservices stack

11 Five reasons to use the
webMethods ESB

12 Next steps

2

Evolution of Microservices

meant fewer dependencies between developers. This made project management
easier—very valuable when delivering large-scale projects.

The notion of a microservice, at its very core, is that each piece of a complex
system is discrete, and its business functionality can be broken down into much
smaller pieces. Those smaller pieces can be engineered—they can be tested
and deployed—independently of trying to cross-coordinate members of a large
engineering team.

Conceptually, a microservice is a portion of a complex application that is a discrete
amount of self-contained business functionality, meaning the run-time server, the
configuration and the business logic are deployed as a single unit. These units can
be developed, tested, deployed, upgraded, retired and so on without having to
deploy the entire application at the same time. Additionally, microservices can scale
up or out individually as needed.

There are additional benefits that microservices offer. The independence realized
by breaking down business functionality into discrete deployment units lends itself
very well to the idea of “use the right tool for the right job” and provides better
agility and more flexibility. Developers can choose any programming language,
storage technology and framework that solve the problem because each part of
the overall system no longer must conform to standards imposed in a “monolithic
architecture.”

Monolithic architecture emerges
When enterprise IT was emerging from the mainframe-dominance era, developers
intentionally built systems in a monolithic way. What gave rise to this approach 15
years ago was the great divide in the computing industry between Microsoft® .NET
and Java® environments. There were certain kinds of applications and development
activities that best suited the Microsoft .NET world, and Java was taking a
stronghold on the back-end, high-end enterprise server arena. The programming
models and practices from the past basically made it convenient to develop
applications using standardized tooling offered by vendors in a way it was hard to
avoid the monolithic situation. Also, IT operations had their own challenges and
tended to lean towards standardizing on a small set of technologies they could fund
and operate efficiently. It was not uncommon to label an enterprise as an Oracle®,
IBM® or Microsoft® shop because of this effect. Developers also didn’t have as many
choices as they do today.

Depending on the platform they chose, developers would put all the pieces of an
application together in a single deployment unit. That discrete unit became known
as a monolithic application. All business functionality was contained in one particular

Monolithic Architecture Microservices

3

Evolution of Microservices

packaging format, and it complied with the rules of the platform’s deployment
model. This was the famous three-tiered architecture: presentation tier, server tier
and storage tier. All of those tiers were implemented in a single implementation.
Developers had to write all that functionality, put it inside something like a Java®
Archive (JAR) file, a WAR file or a .NET assembly, and then deploy it as a single unit.

The problem with this monolithic approach? If any one piece of functionality
needed to change, the developer had to make the change, enhancement or fix, and
then redeploy the entire contents as a whole.

Microservices solved that problem by separating all those pieces of functionality to
run independently. For example, instead of one deployment unit, with microservices
there may be 30 deployment units, and each piece can run and be deployed
independently. This makes it possible to change any piece without redeploying
the whole application and leads to a basic rule of discrete functionality within
microservices: Avoid dependencies between microservices.

Microservices are not necessarily just small services; they, in fact, can be rather large
depending on the functionality they provide. Even so, they are discrete and self-
contained.

Moving beyond monolithic
There’s certainly nothing wrong with the standard three-tiered database style of
architecture. As a matter of fact, over the years, the three-tier architecture evolved
into a N-Tier architecture with more than three but still discrete tiers. The N-Tier
architectural style ran into trouble because of the considerable pressure put on
that single instance of the application running in a production environment. All
clients, whether they were physical humans or systems, communicated with that one
application server.

One of the things that N-Tier or three-tier application designers have to deal with
today is how to scale the tiers of an application. At some point, there will be too
many user sessions trying to hit the application server, and an attempt will have to
be made to scale it—either vertically or horizontally. The problem comes in knowing
when that limit will be reached. And because all the functionality is not separated,
as in a microservices architecture, what tends to happen is one capability in the
application might consume too many resources in that application server. This event
causes a condition of starvation for all the other functionality residing within the
server.

What has happened over time—and it is a fundamental change—is the substantial
increase in the size of the applications organizations are attempting to deploy.
Look at Netflix®, Facebook and LinkedIn®—these are massive applications. Even
inside the enterprise, it is now not uncommon for a single massive application to
be deployed for enterprise-wide or customer-facing use. There are hundreds of
thousands of users today, as opposed to years ago when applications were mostly
built in stovepipes and silos for departmental use. As a result, the complexity
of trying to scale an N-Tier architecture built using a monolithic approach now
outweighs the benefits of using that design. That design is very difficult to fan out. In
contrast, with a microservices approach, fanning out the processing and load across
multiple instances is much easier to manage operationally and lends itself to making
use of newer elastic scaling capabilities.

This is especially true with the persistence layer. In a monolithic architecture,
there might be a central location where all the data for every functional part of
the business application resides in only a single database instance. Eventually the
system will encounter a bottleneck where the database cannot scale large enough
any longer, and an attempt must be made to fan out the database tier itself.

4

With a microservices-based architecture, things are different. Because it’s oriented
toward separating storage and functionality discretely, there can be many more
instances of how things get stored, and many more copies of that implementation
running in an environment. Because of this kind of distributed architecture,
some of the largest applications today are able to scale to sizes unheard of
before. Applications today are built not for thousands of people but for millions
of connected users, and that’s much of what is driving the move away from a
monolithic approach and towards microservices.

How microservices matured
The difference between microservices and SOA
SOA and microservices share a common pattern. Both are based on the concept
of a service, and both ideally separate the interface exposed to a caller from the
implementation. However, microservices applies a practice that is neither defined
nor enforced by SOA. In essence, both represent the construct of an Application
Programming Interface (API) within the context of a larger system.

The main difference is that a microservice employs a practice that attempts to
eliminate any dependencies on other microservices. SOA does not make this
practice explicit as a requirement; it’s left as an implementation detail.

Suppose a developer builds a Web service that does a credit check based on a
customer’s social security number and some other basic information. In order for
that particular service to function in an SOA-style implementation, it may invoke a
chain of dependent services. With the microservices style, you would try and avoid
forming those dependencies.

One of the things a developer should do when creating a microservices architecture
is to set some finite rules. One rule should be that each particular part of the
system, the discrete functionality, is autonomous, meaning that it functions all by
itself. It has its own persistence, its own interface and its own wire level protocols
that it supports. The only way that one microservice should ever speak to another
microservice is through a common network protocol, such as REST. SOA, by
contrast, does not go so far as to dictate the implementation approach. In an SOA,
it’s left up to the system designer to decide whether those service chains should be
called internally, in process or through a network protocol. Here again, microservices
is a more specific approach to building an SOA.

Service 1

Service 2

Service 3

Services Loosely Coupled Microservices De-coupled

Evolution of Microservices

5

Is microservices, as some have argued, simply a way of “finally getting SOA right?”
No, microservices is a subset of SOA and applies some additional rules. It is the
adherence to those rules that gives microservices its own unique “mission” in
application development and enterprise architecture.

DevOps plus microservices equals disruption
Adopting a microservices style of architecture does have its challenges. Here’s why.
The traditional enterprise has created a separation between development and
operations and for very good reasons. When developers are allowed to use “the
right tool for the right job,” the cost or complexity of operating a system composed
of many technologies often isn’t taken into consideration. Over time, the IT
operations organization has standardized on the technologies it owns. This ensures
that budgeting for capacity, daily operational tasks, planned upgrades, security
and so on can be managed in the most efficient manner using the least amount
of human capital. Developers, for example, need to consider which database,
messaging technology, Web servers, app servers, and even operating systems and
hardware are used in their production systems. Developers unfortunately have the
daunting task of understanding business requirements and, at the same time, they
are constrained by what technologies the operations teams agree they can support
due to budgetary concerns.

For microservices to become truly an effective style of architecture, it also
necessitates a disruption within the overall organization such that the developers
who built the system play a much larger role in operating it as well. Interestingly this
notion of developers operating the production system is not entirely new. If we think
back to a few decades ago, this was typically the case but for a different reason.
Years ago, the complexity of running a data center was something that only highly
trained engineering scientists could actually do, and they were typically the same
staff that built the applications.

The introduction of microservices in IT impacts deeply ingrained culture and breaks
the barriers between Dev and Ops. This signifies a movement away from the
traditional IT development and IT operations into DevOps. So, before any company
goes too deep into microservices, it must step back and ask whether it’s also ready
to break the traditional barrier between IT operations and IT development.

A tipping point for DevOps and microservices
Once an organization is willing to move into DevOps along with microservices, it will
find quickly that, as more microservice-based applications are built and deployed,
the cost of owning them and operating them may outweigh the benefits of the
speed of bringing them to market. The reason is that traditional IT might deal with
hundreds of applications. Even with microservices, there is a tipping point that
requires standardization.

Let’s consider an example where a DevOps team is building an extremely large
application for customer engagement that’s exposed to all customers. This
one application offers considerable business functionality and will require the
deployment of hundreds of microservices using different technologies that are all
interacting perhaps in a point-to-point manner.

The DevOps team, since it wrote the code, knows how to manage that environment;
it knows exactly what each part of the system is doing. If something is not working
correctly—say, an upgrade is needed or a fix applied—the team knows where
to find everything. For this single large application, everything is fine. But what
happens when the same DevOps team must deploy a second large application?
Perhaps the team uses some of the same microservices, perhaps not. Maybe it
creates additional microservices. Now what about the third application?

Evolution of Microservices

6

Eventually, over time, that DevOps team might realize that traditional IT operations
created its list of “thou must …” deployment standards for a simple reason: Once
an organization gets into the eleventh or twelfth application, it becomes difficult to
keep track of where everything is. At that point, the DevOps team will likely accept
that some things must be standardized. For example, they might say, “We realize
we have 2,000 copies of a particular log4j jar file running around in the production
environment, and we just got a phone call from our security auditor, who told us
that there’s a new vulnerability in log4j and that we must upgrade all the log4j jars
deployed in our production environments. Now we must go find 2,000+ log4j files
across all containers and we don’t know where they are!” This makes a great case
for why sharing common things is good and why standardization helps efficiency.

This is the tipping point that might be reached with DevOps and microservices:
Building a monolithic application, in which everything is shared and there’s a
common library, has a significant cost in coordinating its development; however,
it does make it simpler to operate and maintain those production environments.
On the other hand, building a microservices-based application, where nothing is
shared and each microservice has its own copy of a library, database and every
other component, leads to many challenges in a production environment—but it
provides great agility in development. The pendulum is likely to swing back and
forth. In the end, it will likely be a good idea to share some things and a bad idea
to share others. And similarly, the developers who are building the microservices
today are going to start looking for pre-built frameworks and technologies that are
best in class at certain functional areas, such as an ESB, so they don’t have to “roll
everything by hand.”

Microservices as a usage pattern
It is commonly assumed the value of a microservices approach is that it represents
a new architectural pattern and, therefore, leads to a superior application when
compared with the monolithic approach. This is not necessarily true. The superiority
of microservices is in its usage pattern, or the style in which it allows programmers
to work. Programmers prefer to work by doing something small, testing it, throwing
it into a production environment, receiving feedback from hundreds of people, and
making improvements. That is the cycle they favor, and microservices allows them
to work that way. The same is true for SOA and Event-Driven Architecture (EDA)
styles. In addition, programmers prefer to work independently, where they don’t
have as many dependencies on other team members. They are much more agile
that way. They can build things faster, incorporating immediate feedback into work
that might be only partially completed. This usage pattern is the greatest benefit of
microservices—not necessarily what is achieved but how the microservices are used.
Decoupling large applications into smaller parts is a good idea; there are several
styles of architecture that, in principle, offer the same advantage.

Imagine a developer deploys a microservice and someone tries to use it but realizes
he can’t because of some limitation. That person reaches out to the developer of
the microservice and says, “I like what you built. However, I would like to use it in
a slightly different way.” The nice thing about microservices is that this immediate
understanding of a limitation can turn into an immediate enhancement to alleviative
that constraint. It is more of an Agile approach, as opposed to, “Hey, we’re going to
embark on long project; we’re going to design everything on paper, we’re going to
code it up and we sure hope it works and if you want it enhanced we will repeat this
process.”

Evolution of Microservices

7

Microservices and applications
An application’s construction has radically changed over the years as applications
themselves have changed. First came the green-screen application, then the
desktop application, and soon after the client/server application. Today, an
application is a composition of orchestrated modular parts that are highly
distributed throughout the enterprise architecture. Parts of an application exist
in the SOA layer, the business rules server, the messaging provider, content
management, storage tiers, caches in-memory and so on. The same application
may have several different form factors. It may work on a tablet or smartphone
as equally as it does on a Web browser. Applications might be process-enabled
and drive business processes or interact with end-to-end processes. Trying to stuff
all of this into one deployment unit, into a monolith, simply becomes “mission
impossible” and does not lend itself for changing the application at the speed
Digital Enterprises need today. The microservices architecture, therefore, is a
welcome idea to help with the composition of a modern-day application.

Microservices in the cloud versus on-premises
Is there a difference in how a microservices-based solution is deployed in the cloud
versus on-premises? The short answer is no. In fact, the cloud offers a distinct
advantage. One of the things about microservices architecture is that very little
capacity planning is needed. It is possible to start small, relocate and replicate as
needed. The benefit of running as a cloud deployment is the speed at which you
can provision additional hardware, which essentially matches the speed you can
provision microservices.

Therefore, expect to see modern applications that are built in microservices
deployed more frequently in the cloud than on-premises.

Docker® in the cloud benefits microservices
One popular way to deploy a microservices architecture is by means of using
containers. A very popular container technology, Docker removes the need for IT
operations professionals to be involved with software installation. Using Docker,
a developer can prepare an image of any size in a container, and that container
is immediately executable in an environment. Docker is highly effective in the
on-premises data center as well as in cloud environments, but the cloud offers an
endless supply of computing power on demand that is just a click away.

Evolution of Microservices

8

The ESB’s changing role
The emergence, and re-emergence, of the ESB
The notion of an ESB evolved out of a need to take large monolithic applications
and eliminate the point-to-point nature of how they interact with each other.

Fifteen years ago, enterprise applications were deployed in “stovepipes”—like the
HR department, the finance department and the product development department.
Eventually there was a need for these applications talk to each other. The concept
of an ESB grew out of the search for a mechanism to take the applications that
needed to talk to each other and provide a more common or efficient way to deliver
interoperability and interconnectivity. The ESB further evolved into a way to extend
these legacy applications with new capabilities. This was especially true for “shrink-
wrapped” applications that a vendor might have to enhance for you.

Connectivity models have been around for a long time. There have been various
“pre-ESB” forms of this enterprise interconnectivity model over the years. At the
turn of the millennium, there were brokers like CORBA®, which was a hub-and-
spokes type of architecture. All the interconnectivity resided in the center and
spokes ran outward to connect various assets to that central place.

What emerged was a fleeting opportunity for the ESB to be part of a monolithic
enterprise application. However, the school of thought prevailed that the true
purpose of the ESB was always to remain a separate component and to wire
together the large monolithic applications. It was the applications that took longer
to realize the value of decoupling their functionality into smaller discrete and
distributed modules. One reason was the cost of chopping up or refactoring the
monolith that was not initially designed to be de-coupled. However, many new
applications have been built using ESB technologies that provide a foundation for a
much more agile architecture, and this trend will continue.

Microservice I Microservice II Microservice III Microservice IV

Load Balancing Load Balancing Load Balancing

ContainerContainerContainerContainer

Microservices Integration Platform

Operational Intelligence and Infrastructure Monitoring

Microservices Mediation, Discovery and Configuration

Architecture

Interaction channels

Messaging,
APIs

Messaging,
APIs

Messaging,
APIs

Messaging,
APIs

Load Balancing

Evolution of Microservices

9

Today, applications have become increasingly large and have much higher scaling
requirements. As a result, the very same concepts of an ESB—i.e., a governance-
driven approach to integrating many different endpoints and creating many-to-
many patterns—are now finding their way into application design. Due to that, the
application itself and the ESB are becoming synonymous.

Instead of building an application that is monolithic (all self-contained) and trying to
persuade the entire development team to coordinate on standards, programming
practices and languages, the idea that the microservices architecture brings forward
is to decompose everything and essentially apply the principles of what has been
done with an ESB for integration to the application itself.

Does this evolution of the ESB concept mean the standalone ESB is unnecessary in
a microservices-based architecture?

No, and here’s why. As the large monolithic application gets decomposed into
a microservices-based architecture or new applications are being developed,
software designers and architects are slowly discovering they need a way to run and
coordinate microservices by creating intelligent routing logic, data transformation,
negotiating and mediating security profiles, for example. An ESB provides this
gateway functionality. It is part of the plumbing, the abstraction and coordination
of everything needed and part of the application itself. It is a serious part of the
system’s integrity. Reality is that by ignoring ESB, designers and architects actually
start to build a proprietary version of an ESB out of microservices.

What is needed, in fact, is an intersection between the microservices approach
and ESB-driven models—in other words, applying the concept of microservices
in a loosely coupled, self-contained, fully distributed system with the capabilities
found in the typical ESB. This makes microservices even more powerful with richer
capabilities.

Where does the true cost reside in a microservices architecture?
The total cost of ownership is yet to be determined; time will reveal more insight.
It is just as likely for a project to fail using microservices as any other style of
architecture. Microservices, in practice, can lead unintentionally to the creation of a
“Frankenstein” by misuse of too many variances in service interfaces, frameworks
and redundant technologies. Without the right discipline, it is possible to create a
new form of the “spaghetti” network and also end up with an overall footprint that
might not be conducive to the business.

It is important to decompose a system into smaller services that are re-usable and
self-contained, mediated and well managed. Similarly, microservices developers—or
DevOps teams—will most likely realize that a fully decomposed design with too
much granularity is not a panacea either, because it lacks the balance of a practical
approach to deployment, monitoring, fault isolation, management and control.

Rather than simply re-inventing or replicating the ESB, developers are more likely
to leverage the most useful aspects of an ESB inside the microservices architecture.
The ESB will not vanish or be relegated to a strictly legacy support role within the
enterprise, as some have suggested. Rather, it will take on a newly defined purpose.

Evolution of Microservices

10

Seven things to look for in microservices stack
Once the decision has been made to pursue a microservices approach, it is
essential to find the right ingredients in a microservices-enabled technology stack or
platform. Software AG recommends you look for:

1. Lightweight containers
Does the platform provide a lightweight, dynamic container? This is probably the
top requirement. The typical application server in J2EE® style is too cumbersome
and too heavy and offers too little value for this new category of applications.

2. Polyglot programming environment
Can the platform support a polyglot style environment—in other words, more
than one programming model? The platform itself should never force particular
programming model, style or language. Instead it should be “agnostic” and deliver
multi-channel, multi-container capability wherein a single instance can host native
code, .NET, Java and Spring™ Blueprint, etc.

3. Out-of-the-box capabilities
What out-of-the-box capabilities does this platform have to reduce implementation
overhead? For example, how quickly can a messaging infrastructure be
implemented? How costly is it to operate? How well integrated are the framework’s
capabilities? Is the platform capable of late binding between the interface and the
service implementation?

4. Interoperability on security
How much standardization for interoperability on security is provided? Are
there capabilities for certificate management? Are different styles of credentials
supported within a given implementation and—very importantly—is that capability
abstracted out of the service implementation? A big mistake is to select a
technology in which security, interconnectivity and interoperability are baked into
the service implementation itself. They must be separate.

5. Mediation and intelligent routing
Does the technology provide a mediation and intelligent routing layer? All
microservices-based architectures end up having multiple instances of the same
kind of functionality to support scaling. Therefore, one of the challenges is how to
effectively route the right request to the right instance of a microservice, and how
to mitigate and mediate that traffic. Mediation and intelligent routing address this
problem. This kind of gateway functionality is very critical.

6. Hot “swap-ability”
Does the platform support hot-swapping of microservices? Getting a container
provisioned at run-time is just one aspect. If microservices are replaced, deprecated
or new services are added, how dynamic the changes are is another aspect to
consider.

7. Monitoring and manageability
Considering all the benefits of microservices, one of the challenges is that
microservices can be harder to manage, control and isolate faults due to the highly
distributed nature of the architectural style. How will IT operations figure out where
any problem resides? How will they monitor the system to discover what’s failing,
what’s working well and what’s not working well? How will they perform upgrades
and corrections? Any technology platform, therefore, should include the ability
to monitor an end-to-end implementation based on microservices in a way that
doesn’t require any instrumentation to be put into the microservice itself.

Evolution of Microservices

11

Five reasons to use the webMethods ESB
The right integration platform for microservices, especially when selected upfront,
can help IT reduce long-term maintenance costs and also make the whole initiative
a resounding success. Here are five key reasons to use the webMethods Integration
Platform in a microservices environment:

1. The webMethods ESB is a lightweight container and will scale down, up or out
depending on your needs. It is equally capable as a container in Point of Sales
(POS) deployments or in massively horizontally scalable implementations.

2. The webMethods ESB has always been programming-model-agnostic and
multi-container capable. From its very inception, it has been designed for the
polyglot programming paradigm. This means the developer is free to use
different programming languages as needed in a single solution. As a container,
the webMethods ESB ships with hundreds of pre-built useful APIs and services,
frameworks, and EDA and in-memory data grid support. The ESB supports the
open standards, security standards and wire protocols needed by modern-day
applications.

3. Services hosted in the ESB are “hot swappable” and can be changed safely
while the container is still running. This feature makes it very relevant to the
microservices architecture; as microservices change, the corresponding services
on the ESB layer can be changed without needing to bring the server down.

4. The webMethods ESB may be deployed in a DMZ acting as a gateway,
deployed inside the firewall acting as a gateway, or both. There is never a need
to open inbound ports on the firewall, and there are no proxies to configure.
The ESB provides routing and mediation services that are a key part of a
microservices style architecture.

5. Microservices-style architectures require connectivity to a variety of data
sources, storage technologies and applications. The webMethods ESB has a
full range of connectors to support the most modern standards, such as OData,
REST, and the full complement of SOAP-based Web-service support.

Evolution of Microservices

About the Author
Originally from Boston,
Rob Tiberio has more than
25 years of experience
in large-scale enterprise
architecture, networks
and communications,
mainframes and open systems
technologies. Early in his
career, Rob helped develop
technology for Arpanet,
IBM® SNA, DECnet, Banyan,
Novell and TCP/IP. At Digital
Equipment Corporation,
Raytheon and Computer
Network Technology, he
contributed to the founding
of the Internet and developed
fault-tolerant networking
device drivers for Stratus
Computer symmetrical
parallel processing systems
running FTX.

Rob joined webMethods
(now Software AG) in 2001
as Director of R&D, BPMS
Architecture. In 2009, he was
named Senior Vice President
and Chief Architect for
Software AG. He is currently
responsible for fostering a
paradigm shift in Software AG’s
architecture and thought
leadership on fully distributed
computing, hybrid cloud
architecture, EDA, big data
and microservices, among
other industry technologies
and trends.

ABOUT SOFTWARE AG
Software AG offers the world’s first Digital Business Platform. Recognized as a leader by the industry’s top analyst firms, Software AG helps you combine existing systems on premises and in
the cloud into a single platform to optimize your business and delight your customers. With Software AG, you can rapidly build and deploy adaptive applications to exploit real-time market
opportunities. Get maximum value from big data, make better decisions with streaming analytics, achieve more with the Internet of Things, and respond faster to shifting regulations and threats with
intelligent governance, risk and compliance. The world’s top brands trust Software AG to help them rapidly innovate, differentiate and win in the digital world. Learn more at www.SoftwareAG.com.

© 2015 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG.
Other product and company names mentioned herein may be the trademarks of their respective owners.

wp_integration_api_evolution-of-microservices_en

Next steps
As you look to build easy-to-adapt and maintain applications for your Digital
Enterprise, consider the value of the webMethods ESB. It can be the ideal
foundation for an agile microservices architecture, helping you reducing costs
and more easily manage change. For more information, talk to your Software
AG representative or visit www.softwareag.com/integration today.

Evolution of Microservices

