The promise of cloud data warehouses is tantalizing–boundless capacity, high performance processing, and seamless scaling without the management hassle. You can make continuous data available on-demand to analysts and data scientists for innovation and exploration with cloud data warehouse integration.
Should you replicate your data infrastructure to the cloud and “go”? Not so fast. A legacy data architecture in a cloud data warehouse is still a legacy architecture: all of the complexity and none of the power. It’s not designed for cloud-native architectures and modern execution environments.
A data warehouse is a repository for relational data from transactional systems, operational databases, and line of business applications, to be used for reporting and data analysis. It’s often a key component of an organization’s business intelligence practice, storing highly curated data that’s readily available for use by data developers, data analysts, and business analysts.
Cloud data warehouses bring the added advantage of cost-effectiveness and scalability with pay-as-you-go pricing models, a serverless approach, and on-demand resources. This is made possible by separating compute and storage to take advantage of cost-effective storage and to provide a compute and data access layer specifically for fast analytics, reporting, and data mining. Learn more about the difference between a data lake and a data warehouse.
Cloud data warehouses are a critical component of modern analytics architectures. With them, you can leverage massive amounts of data to drive product innovation, and uncover new insights for decision-making.
A basic data ingestion pattern to a cloud data warehouse starts by reading data from the source, whether on-premises or in the cloud, then converting data types and enriching records as needed. Once your data is transformed and conformed, it is stored in the cloud data warehouse, ready for analysis.
One of the most common challenges to that flow is structural drift, when data schema changes. Also of concern is semantic drift–the meaning of data are updated. If you don’t handle data drift your data drops, disappears, or never reaches its destination.
The smart data pipeline difference
What smart data pipelines do
Managing structural drift